Здравствуйте, Игорь.
Хотел бы вернуться к теме об ошибочном расчете потерь в материале программой MMANA. Насколько я понял, тема завершения не получила. Во всяком случае, мне найти не удалось.
Суть проблемы описал ra6foo на своем сайте:
http://ra6foo.qrz.ru/RlosRrad.htmlМощность потерь на малом участке диполя пропорциональна его длине, сопротивлению и квадрату тока в нём. В программе R провода также должно быть распределено по сегментам провода пропорционально их длине. В MMANA это условие не выполняется, сопротивление материала провода в ней введено в центр провода.
Кроме того, проблема упоминалась в треде о сопротивлении излучения петлевого вибратора тут:
http://dl2kq.de/forum/index.php/topic,165.msg3547.html#msg3547Возможно, что причиной ошибочного определения R изл. петлевого вибратора оппонентами
является ошибочная методика моделирования R потерь сосредоточенным сопротивлением
в максимуме тока. Ошибка в имитации R потерь может быть в таком случае до 2 раз.
R потерь - распределенная по длине провода величина.
и вот тут:
http://dl2kq.de/forum/index.php/topic,165.msg3646.html#msg3646Посмотрим в коде, что за чудеса. Так быть не должно.
Программно потери от материала считаются довольно сложным образом для данной частоты, а затем вставляются в виде дополнительного импеданса в каждый сегмент.
К сожалению, в виде дополнительного импеданса в каждый сегмент провода потери все же не вставляются, а вводятся в центр провода именно так, как об этом пишет ra6foo.
Для подтверждения того, что вносимое сопротивление потерь рассчитывается неправильно достаточно создать полуволновой диполь из одного провода с источником в центре используя материал с потерями, и убедиться, что получившееся вносимое сопротивление потерь вдвое больше рассчитанного вручную для синусоидального распределения тока.
Для подтверждения того, что в MMANA сопротивление провода введено именно в центр, а не имеет место какая-либо другая ошибка, достаточно создать четвертьволновой вертикал на идеальной земле из материала с потерями и убедиться, что получившееся в результате симуляции вносимое сопротивление потерь совпадает с ручным расчетом.
Если допустить что алгоритм расчета потерь работает одинаково во всех случаях (что кажется мне разумным допущением), то станет понятно, что неправильный результат в случае с полуволновым диполем и правильный результат в случае с четвертьволновым вертикалом могут получиться только если сопротивление материала проводника вводится именно в центр провода. В первом случае имеем (нормируя ток к единице, считая распределение тока синусоидальным) R_loss = R * sin(pi/2)^2 = R (неправильно), во втором R_loss = R * sin(pi/4)^2 = R / 2 («правильно»), где R_loss – вносимое сопротивление потерь, R – сопротивление проводника, sin(pi/2) и sin(pi/4) – нормированные к единице токи в центре провода диполя и вертикала соответственно. По тем же причинам что и для вертикала, "правильно" считается полуволновый диполь состоящий из двух одинаковых проводов.
Обойти проблему можно либо разбив модель на большее количество проводов, либо использовать материал без потерь и вставить в каждый сегмент нагрузку в виде сопротивления пропорционального длине сегмента (я использовал для этого скрипт на питоне, который анализирует таблицу токов, получает из нее длины сегментов и генерирует список сосредоточенных нагрузок для модели), тогда все считается правильно. Однако все это усложняет модель, работу с оптимизатором и вообще делает использование программы заметно менее удобным.
Проблема присутствует в MMANA вплоть до версии 3.5.3.82.
Хотел бы попросить уделить внимание решению этой проблемы в новых версиях MMANA.
С уважением,
Кирилл R2AXZ
73!
P. S. Интересно, присутствует ли эта проблема платной версии MMANA?..